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Table 19-2 Anchoring Junctions
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adherens junction

qesmoS0me

cad her in
(c lass ica l  cadher in )

cadher in  (desmogle in ,
desmoco l l in )

cadher in  in
ne ighbor ing  ce l l

desmogle in  and
desmoco l l in  in
ne ighbor ing  ce l l

act in f i laments

intermediate
f i laments

actin f i laments

intermediate
f i laments

c[-catenin, B-catenin,
plakog lobin ( lcatenin;,
p1  20-ca ten in ,  v incu l in ,
c[-act inin

plakog lobin (y-catenin),
p lakoph i l in ,
desmoplakin

actinlinked cell- integrin
matrix adhesion

extracellular matrix
proteins

extracellular matrix
proteins

ta l in ,  v incu l in ,  a -ac t in in ,
f i lamin, paxi l l in, focal
adhesion kinase (FAK)

plectin, dystonin (8P230)hemidesmosome integrin o6p4, type XVll
collagen (8P180)

some integrins link to actin and form actin-linked cell-matrix adhesions, while
others link to intermediate filaments and form hemidesmosomes.

There are some exceptions to these rules. Some integrins, for example,
mediate cell-cell rather than cell-matrix attachment. Moreover, there are other
types of cell adhesion molecules that can provide attachments more flimsy than
anchoring junctions, but sufficient to stick cells together in special circum-
stances. Cell-cell adhesions based on cadherins. however, seem to be the most
fundamentally important class, and we begin our account of cell-cell adhesion
with them. <CGAA>

Cadherins Mediate Ca2*-Dependent Cell-Cell Adhesion in All
Animals

Cadherins are present in all multicellular animals whose genomes have been
analyzed, and in one other knor,rrn group, the choanoflagellates. These creatures
can exist either as free-living unicellular organisms or as multicellular colonies
and are thought to be representatives of the group of protists from which all ani-
mals evolved. Other eucaryotes, including fungi and plants, Iack cadherins, and
they are absent from bacteria and archaea also. Cadherins therefore seem to be
part of the essence of what it is to be an animal.

The cadherins take their name from their dependence on Ca2* ions: remov-
ing Ca2* from the extracellular medium causes adhesions mediated by cad-
herins to come adrift. Sometimes, especially for embryonic tissues, this is
enough to let the cells be easily separated. In other cases, a more severe treat-
ment is required, combining Ca2* removal with exposure to a protease such as
trypsin. The protease loosens additional connections mediated by extracellular
matrix and by other cell-cell adhesion molecules that do not depend on Ca2*. In
either case, when the dissociated cells are put back into a normal culture
medium, they will generally stick together again by reconstructing their adhe-
sions.

This tlpe of cell-cell association provided one of the first assays that allowed
cell-cell adhesion molecules to be identified. In these experiments, monoclonal
antibodies were raised against the cells of interest, and each antibodywas tested
for its ability to prevent the cells from sticking together again after they had been
dissociated. Rare antibodies that bound to the cell-cell adhesion molecules
showed this blocking effect. These antibodies then were used to isolate the
adhesion molecule that they recognized.

Virtually all cells in vertebrates, and probably in other animals too, seem to
express one or more proteins of the cadherin family, according to the cell type.
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Several lines of evidence indicate that they are the main adhesion molecules hold-
ing cells together in early embryonic tissues. For example, embryonic tissues in
culture disintegrate when treated with anti-cadherin antibodies, and if cadherin-
mediated adhesion is Ieft intact, antibodies against other adhesion molecules
have little effect. Studies of the early mouse embryo illustrate the role of cadherins
in development. Up to the eight-cell stage, the mouse embryo cells are only very
loosely held togetheS remaining individually more or less spherical; then, rather
suddenly, in a process called compaction, they become tightly packed together
and joined by cell-cell junctions, so that the outer surface of the embryo becomes
smoother (Figure l$-5). Antibodies against a specific cadherin, caTled E-cadherin,
block compaction, whereas antibodies that react with various other cell-surface
molecules on these cells do not. Mutations that inactivate E-cadherin cause the
embryos to fall apart and die early in development.

The Cadherin Superfamily in Vertebrates Includes Hundreds of
Different Proteins, Including Many with Signaling Functions

The first three cadherins that were discovered were named according to the
main tissues in which they were found: E-cadherin is present on many types of
epithelial cells; N-cadherin on nerve, muscle, and lens cells; and p-cadherin on
cells in the placenta and epidermis. All are also found in various other tissues; N-
cadherin, for example, is expressed in fibroblasts, and E-cadherin is expressed in
parts ofthe brain (Figure 19-6). These and other classical cadherins are closely
related in sequence throughout their extracellular and intracellular domains.
vtrhile all of them have well-defined adhesive functions, they are also important
in signaling. Through their intracellular domains, as we shall see later, they relay
information into the cell interior, enabling the cell to adapt its behavior accord-
ing to whether it is attached or detached from other cells.

There are also a large number of nonclassical cadherins more distantly
related in sequence, with more than 50 expressed in the brain alone. The non-
classical cadherins include proteins with known adhesive function, such as the
diverse protocadherlrzsfound in the brain, and the desmocollinsand, desmogleins
that form desmosome junctions. They also include proteins that appear to be
primarily involved in signaling, such as T-cadherin, which lacks a transmem-
brane domain and is attached to the plasma membrane of nerve and muscle

3.5 days

32 cel ls  
1o Pm

Figure 19-5 Compaction of an early
mouse embryo. The cel ls of the early
embryo at f i rst st ick together only
weakly. At about the eight-cell stage,
they begin to express E-cadherin and as
a result become strongly and closely
adherent to one another. (Scanning
electron micrographs courtesy of Patr icia
Calarco; 16-32-cel l  stage is from
P. Calarco and C.J. Epstein, Dev. Biol.
32:208-213, 1973. With permission from
Academic Press.)

Figure 19-6 Cadherin diversity in the
central nervous system, The diagram
shows the expression patterns ofthree
different classical cadherins in the
embryonic mouse brain. More than
70 other cadherins, both classical and
nonclassical,  are also expressed in the
brain, in complex patterns that are
thought to ref lect their roles in guiding
and maintaining the organization of this
intr icate oroan.
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CADHERINS AND CELL-CELL ADHESION 1  1 3 9

Figure 19-10 Sort ing out. Cells from
different parts of an early amphibian
embryo wil l  sort out according to their
origins. In the classical experiment shown
here, mesoderm cells (green), neural plate
cells (b/ue), and epidermal cells (red) have
been disaggregated and then
reaggregated in a random mixture.They
sort out into an arrangement reminiscent
of a normal embryo, with a "neural tube"
internally, epidermis externally, and
mesoderm in between. (Modified from
P.L. Townes and J. Holtfreter, J. Exp. Zool.
1 28'53-120, 1 955. With permission from
Wiley-Liss.)

(A)

prasma
memorane

of cel l  2

hinge region cadher in repeat

Figure 19-9 Cadherin structure and function. (A) The extracel lular domain
of a classical cadherin (C-cadherin) is shown here, i l lustrat ing how two such
molecules on opposite cel ls are thought to bind homophil ical ly, end-to-
end. The structure was determined by x-ray diffraction of the crystallized
C-cadherin extracel lular domain. (B)The extracel lular part of each
polypeptide consists of a series of compact domains cal led cadherin
repeats, joined by f lexible hinge regions. Ca2+ binds in the neighborhood
of each hinge, preventing it from flexing. In the absence of Ca2+, the
molecule becomes f loppy and adhesion fai ls. (C) At a typical junction,
many cadherin molecules are arrayed in paral lel,  functioning l ike Velcro to
hold cel ls together. Cadherins on the same cel l  are thought to be coupled
by side-to-side interactions between their N-terminal head regions, and via
the attachments of their intracel lular tai ls to a mat of other proteins (not

shown here). (Based on T.J. Boggon et al., Science 296:1308-1313,2002.
With permission from AAAS.)

types of transmembrane adhesion proteins. The making and breaking of
anchoring junctions plays a vital part in development and in the constant (c)
turnover of tissues in many parts of the mature body. <CGAA>

Selective Cell-Cell Adhesion Enables Dissociated Vertebrate Cells
to Reassemble into Organized Tissues

Cadherins form specific homophilic attachments, and this explains why there
are so many different family members. Cadherins are not like glue, making cell
surfaces generally sticky. Rather, they mediate highly selective recognition,
enabling cells of a similar ty?e to stick together and to stay segregated from
other types of cells.

This selectivity in the way that animal cells consort with one another was
demonstrated more than 50 years ago, Iong before the discovery of cadherins, in

experiments in which amphibian embryos were dissociated into single cells.
These cells were then mixed up and allowed to reassociate. Remarkably, the dis-
sociated cells often reassembled in uitro into structures resembling those of the
original embryo (Figure f9-10). The same phenomenon occurs when dissoci-
ated cells from two embryonic vertebrate organs, such as the liver and the retina,
are mixed together and artificially formed into a pellet: the mixed aggregates

< 0.05 mM Ca2+



'1142 Chapter 19: Cell Junctions, Cell Adhesion, and the Extracellular Matrix

Catenins Link Classical Cadherins to the Actin Cytoskeleton

The extracellular domains of cadherins mediate homophilic binding. The intra-
cellular domains of typical cadherins, including all classical and some nonclas-
sical ones, provide anchorage for filaments of the cytoskeleton: anchorage to
actin at adherens junctions, and to intermediate filaments at desmosome junc-
tions, as mentioned earlier (see Figure 19-3). The linkage to the c],toskeleton is
indirect and depends on a cluster of accessory intracellular anchor proteins that
assemble on the tail of the cadherin. This linkage, connecting the cadherin fam-
ily member to actin or intermediate filaments, includes several different com-
ponents (Figure f9-f4). These components vary somewhat according to the
type of anchorage-but in general a central part is played by B-cateninandlor its
close relative y-catenin (plakoglobin).

At adherens junctions, a remote relative of this pair of proteins, p120-
catenin, is also present and helps to regulate assembly of the whole complex.
\Arhen pl2O-catenin is artificially depleted, cadherin proteins are rapidly
degraded, and cell-cell adhesion is lost. An artificial increase in the level of p120-
catenin has an opposite effect. It is possible that cells use changes in the level of
pl20-catenin or in its phosphorylation state as one way to regulate their
strength of adhesion. In any case, it seems that the linkage to actin is essential
for efficient cell-cell adhesion, as classical cadherins that lack their cvtoolasmic
domain cannot hold cells strongly together.

Adherens Junctions Coordinate the Actin-Based Motil i ty of
Adjacent Cells

Adherens junctions are an essential part of the machinery for modeling the
shapes of multicellular structures in the animal body. By indirectly linking the
actin filaments in one cell to those in its neighbors, they enable the cells in the
tissue to use their actin cltoskeletons in a coordinated way.

Adherens junctions occur in various forms. In many nonepithelial tissues,
they appear as small punctate or streaklike attachments that indirectly connect
the cortical actin filaments beneath the plasma membranes of two interacting
cells. In heart muscle (discussed in chapter 23), they anchor the actin bundles
of the contractile apparatus and act in parallel with desmosome junctions to link
the contractile cells end-to-end. (The cell-cell interfaces in the muscle where
these adhesions occur are so substantial that they show up clearly in stained
light-microscope sections as so-called intercalated discs.) But the prototypical
examples of adherens junctions occur in epithelia, where they often form a con-
tinuous adhesion belt (or zonula adherens) close beneath the apical face of the
epithelium, encircling each of the interacting cells in the sheet (Figure r9-r5).
within each cell, a contractile bundle of actin filaments lies adjacent to the
adhesion belt, oriented parallel to the plasma membrane and tethered to it by
the cadherins and their associated intracellular anchor proteins. The actin bun-
dles are thus linked, via the cadherins and anchor proteins, into an extensive
transcellular network. This network can contract with the help of myosin motor
proteins (discussed in chapter l6), providing the motile force for a fundamental
process in animal morphogenesis-the folding of epithelial cell sheets into
tubes, vesicles, and other related structures (Figure fg-f6).

Figure 1 9-14 The l inkage of classical cadherins to actin f i laments. The
cadherins are coupled indirect ly to act in f i laments via B-catenin and other
anchor proteins. s-Catenin, vincul in, and plakoglobin (a relat ive of
B-catenin, also cal led lcatenin) are probably also present in the l inkage or
involved in control of i ts assembly, but the detai ls of the anchorage are not
well  understood. Another intracel lular protein, cal led p120-catenin, also
binds to the cadherin cytoplasmic tai l  and regulates cadherin function.
B-Catenin has a second, and very important, function in intracel lular
signal ing, as we discuss in Chapter 15 (see Figure 15-77).

cel  I  expressing

cel l  expressing
high level  of  E-cadher in

level  of  E-cadher in
(B)

Figure 1 9-1 3 Cadher in-dependent cel l
sor t ing.  Cel ls  in cul ture can sort
themselves out  according to the type and
level  of  cadher ins they express.  This can
be v isual ized by label ing di f ferent
populations of cells with dyes of different
colors.  (A) Cel ls  expressing N-cadher in
sort  out  f rom cel ls  expressing E-cadher in.
(B) Cel ls  expressing high levels of
E-cadher in sort  out  f rom cel ls  expressing
low levels of  E-cadher in.
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cadherin molecule, and are inuolued not only in physical anchorage but also in the
genesis of intracellular signals. Conuersely, intracellular signals can regulate the for-
mation of cadherin-mediated adhesions. B-Catenin, for example, is also a key compo-
nent of the Wnt cell signaling pathway.

In addition to cadherins, at least three other classes of transmembrane molecules
are also important mediators of cell-cell adhesion: selectins, immunoglobutin (Ig
superfamily members, and integrins. selectins are expressed on white blood cells,
blood platelets, and endothelial cells, and they bind heterophilically to carbohydrate
groups on cell surfaces. They help to trap circulating white blood cells at sites of
inflammation. Ig-superfamily Ttroteins also play a part in this trapping, as well as in
many other adhesiue processes; some of them bind homophilically, some heterophili-
cally. Integrins, though they mainly serue to attach cells to the extracellular matrix, can
also mediate cell-cell adhesion by binding to the lg-superfumily members.

Many different lg-superfamily members, cadherins, and other cell-cell adhesion
molecules guide the formation of nerue connections and hotd neuronal membranes
together at synapses. In these complicated structures, as well as at other types of
cell-cell junctions, intracellulqr scaffold proteins containing multiple pDZ protein-
binding domains haue an important role in holding the many dffirent adhesiue and
signaling molecules in their proper arrangements.

TIGHT JUNCTIONS AND THE ORGANIZATION OF
EPITH ELIA
An epithelial sheet, with its cells joined side by side and standing on a basal lam-
ina, may seem a specialized type of structure, but it is central to the construction
of multicellular animals. In fact, more than 60% of the cell types in the vertebrate
body are epithelial. Just as cell membranes enclose and partition the interior of
the eucaryotic cell, so epithelia enclose and partition the animal body, lining all
its surfaces and cavities, and creating internal compartments where specialized
processes occur. The epithelial sheet seems to be one of the inventions that lie
at the origin of animal evolution, diversifying in a huge variety of ways (as we see
in chapter 23), but retaining an organization based on a set of conserved molec-
ular mechanisms that practically all epithelia have in common.

Essentially all epithelia are anchored to other tissue on one side-the basal
side-and free of such attachment on their opposite side-the apical side. A
basal lamina lies at the interface with the underlying tissue, mediating the
attachment, while the apical surface of the epithelium is generally bathed by
extracellular fluid (but sometimes covered by material that the cells have
secreted at their apices). Thus all epithelia are structurally polarized, and so are
their individual cells: the basal end of a cell, adherent to the basal lamina below
differs from the apical end, exposed to the medium above.

correspondingly, all epithelia have at least one function in common: they
serve as selective permeability barriers, separating the fluid that permeates the
tissue on their basal side from fluid with a different chemical composition on
their apical side. This barrier function requires that the adjacent cells be sealed
together by occluding junctions, so that molecules cannot leak freely across the
cell sheet. In this section we consider how the occluding junctions are formed,
and how the polarized architecture of the epithelium is maintained. These two
fundamental aspects of epithelia are closely linked: the junctions play a key part
in organizing and maintaining the polarity of the cells in the sheet.

Tight Junctions Form a Seal Between Cells and a Fence Between
Membrane Domains

The occluding junctions found in vertebrate epithelia are called tight junctions.
The epithelium of the small intestine provides a good illustration of their struc-
ture and function (see Figure rg-3). This epithelium has a simple columnar
structure; that is, it consists of a single layer of tall (columnar) cells. These are of
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several differentiated types, but the majority are absorptive cells, specialized for
uptake of nutrients from the internal cavity, or lumen, of the gut.

The absorptive cells have to transport selected nutrients across the epithe-
lium from the lumen into the extracellular fluid that permeates the connective
tissue on the other side. From there, these nutrients diffuse into small blood ves-
sels to provide nourishment to the organism. This transcellular transport
depends on two sets of transport proteins in the plasma membrane of the
absorptive cell. One set is confined to the apical surface of the cell (facing the
lumen) and actively transports selected molecules into the cell from the gut. The
other set is confined to the basolateral (basal and lateral) surfaces of the cell, and
it allows the same molecules to leave the cell by facilitated diffusion into the
extracellular fluid on the other side of the epithelium. For this transport activity
to be effective, the spaces between the epithelial cells must be tightly sealed, so
that the transported molecules cannot leak back into the gut lumen through
these spaces (Figure f9-23). Moreover, the proteins that form the pumps and
channels must be correctly distributed in the cell membranes: the apical set of
active transport proteins must be delivered to the cell apex (as discussed in
Chapter 13) and must not be allowed to drift to the basolateral surface, and the
basolateral set of channel proteins must be delivered to the basolateral surface
and must not be allowed to drift to the apical surface. The tight junctions
between epithelial cells, besides sealing the gaps between the cells, may also
function as "fences" helping to separate domains within the plasma membrane
of each cell, so as to hinder apical proteins (and lipids) from diffusing into the
basal region, and vice versa (see Figure 19-23).

The sealing function of tight junctions is easy to demonstrate experimentally:
a low-molecular-weight tracer added to one side of an epithelium will generally
not pass beyond the tight junction (Figure lS-24).This seal is not absolute, how-
ever. Although all tight junctions are impermeable to macromolecules, their per-
meability to small molecules varies. Tight junctions in the epithelium lining the
small intestine, for example, are 10,000 times more permeable to inorganic ions,
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Figure 19-23 The role of tight junctions

in transcellular transport. Transport
proteins are confined to different regions
of the plasma membrane in epithel ial cel ls
of the small  intest ine. This segregation
oermits a vectorial transfer of nutrients
across the epithel ium from the gut lumen
to the blood. In the examPle shown,
glucose is act ively transported into the cel l
by Na+-driven glucose symports at its
apical surface, and it diffuses out of the
cell by facilitated diffusion mediated by
glucose carriers in its basolateral
membrane. Tight junctions are thought to
confine the transport proteins to their
appropriate membrane domains by acting
as dif fusion barriers or"fences"within the
l ipid bi layer of the plasma membrane;
these junctions also block the backflow of
glucose from the basal side ofthe
epithel ium into the gut lumen.BLOOD
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Figure 19-24The role of t ight junctions
in allowing epithelia to serve as barriers
to solute diffusion. (A) The drawing shows
how a small  extracel lular tracer molecule
added on one side of an epithel ium is
prevented from crossing the epithel ium by
the t ightjunctions that seal adjacent cel ls
together. (B) Electron micrographs of cel ls
in  an  ep i the l ium in  wh ich  a  smal l ,
extracel lular, electron-dense tracer
molecule has been added to either the
apical side (on the /eft) or the basolateral
side (on the r ight). In both cases, the t ight
junction blocks passage of the tracer.
(8, courtesy of Daniel Friend.)

(B)(A) f l  5 *

such as Na+, than the tight junctions in the epithelium lining the urinary bladder.
These differences reflect differences in the proteins that form the junctions.

Epithelial cells can also alter their tight junctions transiently to permit an
increased flow of solutes and water through breaches in the junctional barriers.
Such paracellular transporf is especially important in the absorption of amino
acids and monosaccharides from the lumen of the intestine, where the concen-
tration of these nutrients can increase enough after a meal to drive passive
transport in the proper direction.

\t\4ren tight junctions are visualized by freeze-fracture electron microscopy,
they seem to consist of a branching network of sealing strands that completely
encircles the apical end of each cell in the epithelial sheet (Figure r9-25A and B).
In conventional electron micrographs, the outer leaflets of the two interacting

microvi l l i  in test inal  lumen

50 nm

Figure 19-25 The structure of a t ight junction between epithel ial cel ls of the small  intest ine. The junctions are shown (A) schematicalry,
(B) in a freeze-fracture electron micrograph, and (C) in a conventional electron micrograph. In (B), the plane of the micrograph is paral lel to the
plane of the membrane, and the t ight junction appears as a band of branching seal ing strands that encircle each cel l  in the epithel ium.The
sealing strands are seen as r idges of intramembrane part icles on the cytoplasmic fracture face of the membrane (the p face) or as
complementary grooves on the external face of the membrane (the E face) (see Figure 19-26A). ln (C), the junction is seen in cross section as a
series of focal connections between the outer leaflets of the two interacting plasma membranes, each connection corresponding to a seal ing
strand in cross section. (B and C, from N.B. Gilula, in Cell  Communication [R.P. Cox, ed.],  pp. 1-29. New york: Wiley, 1974.)
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plasma membranes are seen to be tightly apposed where sealing strands are pre-
sent (Figure I9-25C). Each tight junction sealing strand is composed of a long
row of transmembrane adhesion proteins embedded in each of the two inter-
acting plasma membranes. The extracellular domains of these proteins adhere
directly to one another to occlude the intercellular space (Figure 19-26).

The main transmembrane proteins forming these strands are the claud.ins,
which are essential for tight junction formation and function. Mice that lack the
claudin-1gene, for example, fail to make tight junctions between the cells in
the epidermal layer of the skin; as a result, the baby mice lose water rapidly by
evaporation through the skin and die within a day after birth. Conversely, if
nonepithelial cells such as fibroblasts are artificially caused to express claudin
genes, they will form tight-junctional connections with one another. Normal
tight junctions also contain a second major transmembrane protein called
occludin, but the function of this protein is uncertain, and it does not seem to
be as essential as the claudins. A third transmembrane protein, tricellulin
(related to occludin), is required to seal cell membranes together and prevent
transepithelial leakage at the points where three cells meet.

The claudin protein family has many members (24 in humans), and these
are expressed in different combinations in different epithelia to confer particu-
lar permeability properties on the epithelial sheet. They are thought to form
paracellular pores-selective channels allowing specific ions to cross the tight-
junctional barrier, from one extracellular space to another. A specific claudin
found in kidney epithelial cells, for example, is needed to let MgZ* pass between
the cells of the sheet so that this ion can be resorbed from the urine into the
blood. A mutation in the gene encoding this claudin results in excessive loss of
MgZ* in the urine.

Scaffold Proteins in Junctional Complexes Play a Key Part in the
Control of Cell Proliferation

The claudins and occludins have to be held in the right position in the cell, so as
to form the tight-junctional network of sealing strands. This network usually lies
just apical to the adherens and desmosome junctions that bond the cells
together mechanically, and the whole assembly is called a iunctional complex
(Figure 19-27). The parts of this junctional complex depend on each other for
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Figure 19-26 A model of a tight junction.
(A) The seal ing strands hold adjacent
plasma membranes together. The strands
are composed of transmembrane proteins
that make contact across the intercel lular
space and create a seal. (B) The molecular
composit ion of a seal ing strand.The
claudins are the main functional
components; the role of the occludins
is uncertain.

cel l
1

ce l l  1

claudin occludin



1 158 Chapter 19: Cell Junctions, Cell Adhesion, and the Extracellular Matrix

such as Frizzled, for example, and Disheuelled, code for proteins that have since
been shown to be components of the Wnt signaling pathway (discussed in
Chapter 15). Two others, Flamingo (see Figure l9-32C) and Dachsous, code for
members of the cadherin superfamily. Still others are less easily classified func-
tionally, but it is clear that planar cell polarity is organized by machinery formed
from these components and assembled at cell-cell junctions in such a way that
a polarizing influence can propagate from cell to cell. Essentially the same sys-
tem of proteins controls planar cell polarity in vertebrates. Mice with mutations
in a Flamingo homolog, for example, have incorrectly oriented hair cells in their
ears (among other defects) and thus are deaf (see Figure l9-32D).

Summary

Occluding junctions-tight junctions in uertebrates, septate junctions in insects and
molluscs-seal the gaps between cells in epithelia, creating a barrier to the diffusion of
molecules across the cell sheet. They also form a bar to the diffusion of proteins in the
plane of the membrane, and so help to maintain a dffirence between the populations
of proteins in the apical and basolateral membrane domains of the epithelial cell. The
major transmembrane proteins forming occluding junctions are called claudins; dif-
ferent members of the family are expressed in dffirent tissues, conferring dffirent per-
meability properties on the uarious epithelial sheets.

Intracellular scaffold proteins bind to the transmembrane components at occlud-
ing junctions and coordinate these junctions with cadherin-based anchoring junc-
tions, so as to create junctional complexes. The junctional scaffold proteins haue at
least two other crucial functions. They play a part in the control of epithelial cell pro-
liferation; and, in conjunction with other regulatory molecules such as Rac and Cdc42,
they gouern cell polarity. Epithelial cells haue an intrinsic tendency to deuelop a polar-
ized apico-basal axis. The orientation ofthis axis in relation to the cell's neighbors in
an epithelial sheet depends on protein complexes inuoluing scaffold proteins that
assemble at cell-cell junctions, as well as on cytoskeletal polarization controlled by
Rac/Cdc42 and on influences from the basal lamina.

The cells of some epitheliahaue anadditionalpolarity intheplane of the epithelium,
at right angles to the apico-basal axis. A separate set ofconserued proteins, operating in a
similar way in uertebrates and in insects, gouerns this planar cell polarity through poorly
understood signaling processes that are likewise based on cell-cell junctions.

PASSAGEWAYS FROM CELL TO CELL: GAP
J UNCTIONS AN D PLASMODESMATA
Tight junctions block the passageways through the gaps between cells, prevent-
ing extracellular molecules from leaking from one side of an epithelium to the
other. Another type of junctional structure has a radically different function: it
bridges gaps between adjacent cells so as to create direct passageways from the
cltoplasm of one into that of the other. These passageways take quite different
forms in animal tissues, where they are called gap junctions, and in plants,
where they are called plasmodesmata (singular plasmodesma). In both cases,
however, the function is similar: the connections allow neighboring cells to
exchange small molecules but not macromolecules (with some exceptions for
plasmodesmata). Many of the implications of this cell coupling are only begin-
ning to be understood.

Gap Junctions Couple Cells Both Electr ical ly and Metabolical ly

Gap junctions are present in most animal tissues, including connective tissues
as well as epithelia, allowing the cells to communicate with their neighbors.
Each gap junction appears in conventional electron micrographs as a patch
where the membranes of two adjacent cells are separated by a uniform narrow
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gap of about 2-4 nm. The gap is spanned by channel-forming proteins, of which
there are two distinct families, called the connexins and the innexins. These are
unrelated in sequence but similar in shape and function: in vertebrates, both
families are present, but connexins predominate, with 2l members in humans.
ln Drosophilaand C. elegans, only innexins are present, with 15 family members
in the fly and 25 in the worm.

The channels formed by the gap-junction proteins allow inorganic ions and
other small water-soluble molecules to pass directly from the cltoplasm of one
cell to the cltoplasm of the other, thereby coupling the cells both electrically and
metabolically. Thus, when a suitable dye is injected into one cell, it diffuses read-
ily into the other, without escaping into the extracellular space. Similarly, an
electric current injected into one cell through a microelectrode causes an almost
instantaneous electrical disturbance in the neighboring cell, due to the flow of
ions carrying electric charge through gap junctions. With microelectrodes
inserted into both cells, one can easily monitor this effect and measure proper-
ties of the gap junctions, such as their electrical resistance and the ways in which
the coupling changes as conditions change. In fact, some of the earliest evidence
of gap-junctional communication came from electrophysiological studies that
demonstrated this type of rapid, direct electrical coupling between some types
of neurons. Similar methods were used to identify connexins as the proteins that
mediate the gap-junctional communication: when connexin mRNA is injected
into either frog oocytes or gap-junction-deficient cultured cells, channels with
the properties expected of gap-junction channels can be demonstrated electro-
physiologically where pairs of injected cells make contact.

From experiments with injected dye molecules of different sizes, it seems
that the largest functional pore size for gap-junctional channels is about 1.5 nm.
Thus, the coupled cells share their small molecules (such as inorganic ions, sug-
ars, amino acids, nucleotides, vitamins, and the intracellular mediators cyclic
AMP and inositol trisphosphate) but not their macromolecules (proteins,
nucleic acids, and polysaccharides) (Figure f9-33).

A Gap-Junction Connexon ls Made Up of Six Transmembrane
Connexin Subunits

Connexins are four-pass transmembrane proteins, six of which assemble to
form a hemichannel, or connexon. \dhen the connexons in the plasma mem-
branes of two cells in contact are aligned, they form a continuous aqueous chan-
nel that connects the two cell interiors (Figure l9-34A and Figure f 9-35). A gap
junction consists of many such connexon pairs in parallel, forming a sort of
molecular sieve. The connexons hold the interacting plasma membranes a fixed
distance apart-hence the gap.

Gap junctions in different tissues can have different properties because they
are formed from different combinations of connexins, creating channels that
differ in permeability. Most cell q,pes express more than one type of connexin,
and two different connexin proteins can assemble into a heteromeric connexon,
with its own distinct properties. Moreover, adjacent cells expressing different
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Figure 19-33 Determining the size of a
gap-junction channel. When f luorescent
molecules of various sizes are injected into
one of two cel ls coupled by gap junctions,
molecules with a mass of less than about
1000 daltons can pass into the other cel l ,
but larger molecules cannot.

Figure 19-34 Gap junctions. (A) A three-
dimensional drawing showing the
interacting plasma membranes of two
adjacent cel ls connected by gap
junctions. Each l ipid bi layer is shown as a
oair of red sheets. Protein assemblies
called connexons (green), each of which
is formed by six connexin subunits,
penetrate the apposed lipid bilayers (red).

Two connexons join across the
intercel lular gap to form a continuous
aqueous channel connecting the two
cells. (B) The organization of connexins
into connexons and connexons into
intercel lular channels. The connexons can
be homomeric or heteromeric, and the
intercel lular channels can be homotypic
or heterotypic.
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Figure 19-35 Gap junctions as seen in
the electron microscope. (A) Thin-section
and (B) freeze-fracture electron
micrographs of a large and a small  gap
junction between f ibroblasts in culture. In
(B), each gap junction is seen as a cluster
of homogeneous intramembrane
part icles. Each intramembrane part icle
corresponds to a connexon. (From
N.B. Gilula, in Cell  Communication
lR.P. Cox, ed.l, pp. 1-29. New York: Wiley,
1974.\
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connexins can form intercellular channels in which the two aligned half-chan-
nels are different (Figure l9-348).

Each gap-junctional plaque is a dyramic structure that can readily assem-
ble, disassemble, or be remodelled, and it can contain a cluster of a few to many
thousands of connexons (see Figure l9-358). Studies with fluorescently labeled
connexins in living cells show that new connexons are continually added around
the periphery of an existing junctional plaque, while old connexons are removed
from the middle of it and destroyed (Figure f 9-36). This turnover is rapid: the
connexin molecules have a half-life of a few hours.

The mechanism of removal of old connexons from the middle of the plaque
is not known, but the route of delivery of new connexons to its periphery seems
clear: they are inserted into the plasma membrane by exocytosis, like other inte-
gral membrane proteins, and then diffuse in the plane of the membrane until
they bump into the periphery of a plaque and become trapped. This has a corol-
Iary: the plasma membrane away from the gap junction should contain connex-
ons-hemichannels-that have not yet paired with their counterparts on
another cell. It is thought that these unpaired hemichannels are normally held

Figure 1 9-36 Connexin turnover at a gap junction. Cells were transfected
with a sl ightly modif ied connexin gene, coding for a connexin with a short
amino-acid tag containing four cysteines in the sequence .. .Cys-Cys-X-X-
Cys-Cys (where X denotes an arbitrary amino acid). This tetracysteine tog
can bind strongly, and in effect irreversibly, to certain small fluorescent dye
molecules that can be added to the culture medium and wil l  readi ly enter
cel ls by dif fusing across the plasma membrane. In the experiment shown, a
green dye was added f irst,  and the cel ls were then washed and incubated
for 4 or t  hours. At the end of this t ime, a red dye was added to the
medium and the cel ls were washed again and f ixed. Connexin molecules
already present at the beginning of the experiment are labeled green (and
take up no red dye because their tetracysteine tags are already saturated
with green dye), while connexins synthesized subsequently, during the
4- or 8-hour incubation, are labeled red. The f luorescence images show
optical sections of gap junctions between pairs of cel ls prepared in this
way. The central part of the gap-junction plaque is green, indicating that i t
consists of old connexin molecules, while the periphery is red indicating
that i t  consists of connexins synthesized during the past 4 or 8 hours. The
longer the t ime of incubation, the smaller the green central patch of old
molecules, and the larger the peripheral r ing of new molecules that have
been recruited to replace them. (From G. Gaietta et al., Sclence
296:503- 507, 2002. With perm ission from AAAS.)
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in a closed conformation, preventing the cell from losing its small molecules by
leakage through them. But there is also evidence that in some physiological cir-
cumstances they can open and serve as channels for the release of small
molecules, such as the neurotransmitter glutamate, to the exteriol or for the
entry of small molecules into the cell.

Gap Junctions Have Diverse Functions

In tissues containing electrically excitable cells, cell-cell coupling via gap junc-
tions serves an obvious purpose. Some nerve cells, for example, are electrically
coupled, allowing action potentials to spread rapidly from cell to cell, without
the delay that occurs at chemical synapses. This is advantageous when speed
and reliability are crucial, as in certain escape responses in fish and insects, or
where a set of neurons need to act in synchrony. Similarly, in vertebrates, elec-
trical coupling through gap junctions synchronizes the contractions of heart
muscle cells as well as those of the smooth muscle cells responsible for the peri-
staltic movements of the intestine.

Gap junctions also occur in many tissues whose cells are not electrically
excitable. In principle, the sharing of small metabolites and ions provides a
mechanism for coordinating the activities of individual cells in such tissues and
for smoothing out random fluctuations in small-molecule concentrations in dif-
ferent cells. Gap junctions are required in the liver, for example, to coordinate
the response of the liver cells to signals from nerve terminals that contact only a
part of the cell population (see Figure f 5-7). The normal development of ovar-
ian follicles also depends on gap-junction-mediated communication-in this
case, between the oocyte and the surrounding granulosa cells. A mutation in the
gene that encodes the connexin that normally couples these two cell types
causes infertility.

Mutations in connexins, especially connexin-26, are the commonest of all
genetic causes of congenital deafness: they result in the death of cells in the
organ of Corti, probably because they disrupt functionally important pathways
for the flow of ions from cell to cell in this electrically active sensory epithelium.
Connexin mutations are responsible for many other disorders besides deafness,
ranging from cataracts in the lens of the eye to a form of demyelinating disease
in peripheral nerves.

Cell coupling via gap junctions also seems to play a part in embryogenesis.
In early vertebrate embryos (beginning with the late eight-cell stage in mouse
embryos), most cells are electrically coupled to one another. As specific groups
of cells in the embryo develop their distinct identities and begin to differenti-
ate, they commonly uncouple from surrounding tissue. As the neural plate
folds up and pinches off to form the neural tube, for instance (see Figure
19-16), its cells uncouple from the overlying ectoderm. Meanwhile, the cells
within each group remain coupled with one another and therefore tend to
behave as a cooperative assembly, all following a similar developmental path-
way in a coordinated fashion.

Cells Can Regulate the Permeabil ity of Their Gap Junctions

Like conventional ion channels (discussed in Chapter 11), individual gap-junc-
tion channels do not remain continuously open; instead, they flip between open
and closed states. Moreover, the permeability of gap junctions is rapidly (within
seconds) and reversibly reduced by experimental manipulations that decrease
the cytosolic pH or increase the cytosolic concentration of free Caz* to very high
levels.

The purpose of the pH regulation of gap-junction permeability is unknor.vn.
In one case, however, the purpose of Caz* control seems clear. lVhen a cell is
damaged, its plasma membrane can become leaky. Ions present at high concen-
tration in the extracellular fluid, such as Ca2* and Na*, then move into the cell,
and valuable metabolites leak out. If the cell were to remain coupled to its
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healthy neighbors, these too would suffer a dangerous disturbance of their
internal chemistry. But the large influx of Ca2* into the damaged cell causes its
gap-junction channels to close immediately, effectively isolating the cell and
preventing the damage from spreading to other cells.

Gap-junction communication can also be regulated by extracellular signals.
The neurotransmitter dopamine, for example, reduces gap-junction communi-
cation between a class of neurons in the retina in response to an increase in light
intensity (Figure f 9-37). This reduction in gap-junction permeability helps the
retina switch from using rod photoreceptors, which are good detectors of low
light, to cone photoreceptors, which detect color and fine detail in bright light.

In Plants, Plasmodesmata Perform Many of the Same Functions
as Gap Junct ions

The tissues of a plant are organized on different principles from those of an ani-
mal. This is because plant cells are imprisoned within tough cell walls composed
of an extracellular matrix rich in cellulose and other polysacharides, as we dis-
cuss later. The cell walls of adjacent cells are firmly cemented to those of their
neighbors, which eliminates the need for anchoring junctions to hold the cells
in place. But a need for direct cell-cell communication remains. Thus, plant cells
have only one class of intercellular junctions, plasmodesmata. Like gap junc-
tions, they directly connect the cytoplasms of adjacent cells.

In plants, the cell wall between a tlpical pair of adjacent cells is at least 0.1
pm thick, and so a structure very different from a gap junction is required to
mediate communication across it. Plasmodesmata solve the problem. With a
few specialized exceptions, every living cell in a higher plant is connected to its
living neighbors by these structures, which form fine cytoplasmic channels
through the intervening cell walls. As shown in Figure l9-38A, the plasma mem-
brane of one cell is continuous with that of its neighbor at each plasmodesma,
which connects the cltoplasms of the two cells by a roughly cylindrical channel
with a diameter of 20-40 nm.

Running through the center of the channel in most plasmodesmata is a nar-
rower cylindrical structure, the desmotubule, which is continuous with elements
of the smooth endoplasmic reticulum in each of the connected cells (Figure
l9-38B-D). Between the outside of the desmotubule and the inner face of the
cylindrical channel formed by plasma membrane is an annulus of cytosol
through which small molecules can pass from cell to cell. As each new cell wall
is assembled during the cytokinesis phase of cell division, plasmodesmata are
created within it. They form around elements of smooth ER that become
trapped across the developing cell plate (discussed in Chapter 17). They can also
be inserted de nouo through preexisting cell walls, where they are commonly
found in dense clusters called pit ftelds. \Alhen no longer required, plasmodes-
mata can be readilv removed.

Figure 19-37 The regulat ion of gap-
junction coupling by a neurotransmitter.
(A) A neuron in a rabbit retina was injected
with the dye Lucifer yellow, which passes
readily through gap junctions and labels
other neurons of the same type that are
connected to the injected cel l  by gap
junctions. (B) The ret ina was f irst treated
with the neurotransmitter dopamine,
before the neuron was injected with dye.
As can be seen, the dopamine treatment
greatly decreased the permeabil i ty of the
gap junctions. Dopamine acts by
increasing intracel lular cycl ic AMP levels.
(Courtesy of David Vaney.)



INTEGRINS AND CELL*MATRIX ADHESION

choline receptors and other proteins in the junctional plasma membrane of the
muscle cell. Reciprocally, muscle cells deposit a particular isoform of laminin in
the junctional basal lamina, and some evidence suggests that this binds directly
to the extracellular domain of voltage-gated Caz* channels in the presynaptic
membrane of the nerve cell, helping to hold them at the synapse where they are
needed. Both agrin and the synaptic isoform of laminin are essential for the for-
mation of normal neuromuscular junctions. Defects in components of the basal
lamina or in proteins that tether muscle cell components to it at the synapse are
responsible for many of the forms of muscular dystrophy, in which muscles at
first develop normally but then degenerate in later years of life.

Summary

The basal lamina is a thin tough sheet of extracellular matrix that closely underlies
epithelia in all multicellular animals. It also wraps around certain other cell rypes,
such as muscle cells. AII basal laminae are organized on a framework of laminin
molecules, linked together by their side-arms and held close beneath the basal ends of
the epithelial cells by attachment to integrins and other receptors in the basal plasma
membrane. Type N collagen molecules are recruited into this structure, assembling
into a sheetlike mesh that is an essential component of all mature basal laminae. The
collagen and laminin networks in mature basal laminae are bridged by the protein
nidogen and the large heparan suffate proteoglycan perlecan.

Basal laminae prouide mechanicel support for epithelia; they form the interface
and the attachment between epithelia and connectiue tissue; they serue as filters in the
kidney; they act as barriers to keep cells in their proper compartments; they influence
cell polarity and cell dffirentiation; they guide cell migrations; and molecules embed-
ded in them help to organize elaborate structures such as neuromuscular synapses.
When cells are damaged or killed, basal laminae often suruiue and can help guide tis-
sue regeneration.

INTEGRINS AND CELL_M RIX ADHESION
Cells make extracellular matrix, organize it, and degrade it. The matrix in its turn
exerts powerful influences on the cells. The influences are exerted chiefly
through transmembrane cell adhesion proteins that act as matrix receptors.
These tie the matrix outside the cell to the cltoskeleton inside it, but their role
goes far beyond simple passive mechanical attachment. Through them, compo-
nents of the matrix can affect almost any aspect of a cell's behavior. The matrix
receptors have a crucial role in epithelial cells, mediating their interactions with
the basal lamina beneath them; and they are no less important in connective-
tissue cells, for their interactions with the matrix that surrounds them.

Several types of molecules can function as matrix receptors or co-receptors,
including the transmembrane proteoglycans. But the principal receptors on ani-
mal cells for binding most extracellular matrix proteins are the integrins. Like
the cadherins and the key components of the basal lamina, integrins are part of
the fundamental architectural toolkit that is characteristic of multicellular ani-
mals. The members of this large family of homologous transmembrane adhe-
sion molecules have a remarkable ability to transmit signals in both directions
across the cell membrane. The binding of a matrix component to an integrin can
send a message into the interior of the cell, and conditions in the cell interior
can send a signal outward to control binding of the integrin to matrix (or, in
some cases, to a cell-surface molecule on another cell, as we saw in the case of
white blood cells binding to endothelial cells). Tension applied to an integrin
can cause it to tighten its grip on intracellular and extracellular structures, and
loss of tension can loosen its hold, so that molecular signaling complexes fall
apart on either side of the membrane. In this way, integrins can also serve not
only to transmit mechanical and molecular signals, but also to convert the one
type of signal into the other. Studies of the structure of integrin molecules have
begun to reveal how they perform these tasks.
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lntegrins Are Transmembrane Heterodimers That Link to the
Cytoskeleton

There are many varieties of integrins-at Ieast 24 in humans-but they all con-
form to a common plan. An integrin molecule is composed of two noncovalently
associated glycoprotein subunits called u, and B. Both subunits span the cell
membrane, with short intracellular C-terminal tails and large N-terminal extra-
cellular domains. The extracellular portion of the integrin dimer binds to spe-
cific amino acid sequences in extracellular matrix proteins such as laminin or
fibronectin or, in some cases, to ligands on the surfaces of other cells. The intra-
cellular portion binds to a complex of proteins that form a linkage to the
cltoskeleton.

For all but one of the 24 varieties of human integrins, this intracellular link-
age is to actin filaments, via talin and a set of other intracellular anchorage pro-
teins (Figure 19-45); talin, as we shall see later, seems to be the key component
of the linkage. Like the actin-linked cell-cell junctions formed by cadherins, the
actin-linked cell-matrix junctions formed by integrins may be small, inconspic-
uous and transient, or large, prominent, and durable. Examples of the latter are
the focal adhesions that form when fibroblasts have sufficient time to form
strong attachments to the rigid surface of a culture dish, and the myotendinous
junctions that attach muscle cells to their tendons.

In epithelia, the most prominent cell-matrix attachment sites are the
hemidesmosomes, where a specific type of integrin (cr6p4) anchors the cells to
laminin in the basal lamina. Here, uniquely, the intracellular attachment is to
keratin filaments, via the intracellular anchor proteins plectin and dystonin
(Figure 19-46).

Integrins Can Switch Between an Active and an Inactive
Conformation

A cell crawling through a tissue-a fibroblast or a macrophage, for example, or an
epithelial cell migrating along a basal lamina-has to be able both to make and
to break attachments to the matrix, and to do so rapidly if it is to travel quickly.
<TGAI> Similarly, a circulating white blood cell has to be able to switch on or off
its tendency to bind to endothelial cells in order to crawl out of a blood vessel at
a site of inflammation under the appropriate circumstances. Furthermore, if

Figure 19-45The subunit structure of
an active integrin molecule, l inking
extracellular matrix to the actin
cytoskeleton. The head of the integrin
molecule attaches direct ly to an
extracel lular protein such as f ibronectin;
the intracel lular tai l  of the integrin binds
to tal in, which in turn binds to
f i lamentous actin. A set of other
intracel lular anchor proteins, including
o-actinin, f i lamin, and vincul in, help to
reinforce the linkage.
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INTEGRINS AND CELL*MATRIX ADHESION 1175

integrins, creating a plaque in which many cytoskeletal filaments are anchored,
as at a hemidesmosome in the epidermis or at a focal adhesion made by a
fibroblast on a culture dish. At focal adhesions, and probably also in the Iess
prominent actin-linked cell-matrix adhesions that cells mainly make in normal
tissues, activation of the small GTPase Rho plays a part in the maturation of the
adhesive complex, by promoting recruitment of actin filaments and integrins to
the contact site. Artificially mutated integrins that lack an intracellular tail fail to
connect with cytoskeletal filaments, fail to cluster, and are unable to form strong
adhesions.

Extracellular Matrix Attachments Act Through Integrins to
Control Cell Proliferation and Survival

Like other transmembrane cell adhesion proteins, integrins do more than just

create attachments. They also activate intracellular signaling pathways and
thereby allow control of almost any aspect of the cell's behavior according to the
nature of the surrounding matrix and the state of the cell's attachments to it.

Studies in culture show that many cells will not grow or proliferate unless
they are attached to extracellular matrix; nutrients and soluble growth factors in
the culture medium are not enough. For some cell t1pes, including epithelial,
endothelial, and muscle cells, even cell survival depends on such attachments.
lVhen these cells lose contact with the extracellular matrix, they undergo pro-
grammed cell death, or apoptosis. This dependence of cell growth, proliferation,
and survival on attachment to a substratum is known as anchorage depen-
dence, and it is mediated mainly by integrins and the intracellular signals they
generate. Anchorage dependence is thought to help ensure that each type of cell
survives and proliferates only when it is in an appropriate situation. Mutations
that disrupt or override this form of control, allowing cells to escape from
anchorage dependence, occur in cancer cells and play a major part in their inva-
sive behavior.

The physical spreading of a cell on the matrix also has a strong influence on
intracellular events. Cells that are forced to spread over a large surface area by
the formation of multiple adhesions at widely separate sites survive better and
proliferate faster than cells that are not so spread out (Figure f 9-5f ). The stim-
ulatory effect of cell spreading presumably helps tissues to regenerate after
injury. If cells are lost from an epithelium, for example, the spreading of the
remaining cells into the vacated space will help stimulate these survivors to pro-
liferate until they fill the gap. It is uncertain how a cell senses its extent of spread-
ing so as to adjust its behavior accordingly, but the ability to spread depends on
integrins, and signals generated by integrins at the sites of adhesion must play a
part in providing the spread cells with stimulation.

Our understanding of anchorage dependence and of the effects of cell
spreading has come mainly from studies of cells living on the surface of matrix-
coated culture dishes. For connective-tissue cells that are normally surrounded

a def ined
amount of

f ibronect in in
s ingle patch

CELL DIES
BY APOPTOSIS

t l

f a l l

a J a t

t c

the same
amount of
fibronectin

distr ibuted in
smal l  spots

CELL SPREADS,
SURVIVES,
AND GROWS

Figure 19-51 The importance of cel l
spreading. In this experiment, cell growth
and survival are shown to depend on the
extent of cel l  spreading on a substratum,
rather than the mere fact of attachment or
the number of matr ix molecules the cel l
contacts. (Based on C.S. Chen et al.,
Science 276:1425-1428, 1997. With
permission from AAAS.)50 pm



1176 Chapter 19: Cell Junctions, Cell Ad:hesion, and the Extracellular Matrix

by matrix on all sides, this is a far cry from the natural environment. Walking
over a plain is very different from clambering through a jungle. The ty?es of con-
tacts that cells make with a rigid substratum are not the same as those, much
less well studied, that they make with the deformable web of fibers of the extra-
cellular matrix, and there are substantial differences of cell behavior between
the two contexts. Nevertheless, it is likely that the same basic principles apply.
Both in uitro and in uiuo, intracellular signals generated at cell-matrix adhesion
sites, by molecular complexes organized around integrins, are crucial for cell
proliferation and survival.

Integrins Recruit Intracellular Signaling Proteins at Sites of
Cell-Substratu m Adhesion

The mechanisms by which integrins signal into the cell interior are complex,
involving several different pathways, and integrins and conventional signaling
receptors often influence one another and work together to regulate cell behav-
ior, as we have already emphasized. The Rasi MAP kinase pathway (see Figure
15-61), for example, can be activated both by conventional signaling receptors
and by integrins, but cells often need both kinds of stimulation of this pathway
at the same time to give sufficient activation to induce cell proliferation. Inte-
grins and conventional signaling receptors also cooperate in activating similar
pathways to promote cell survival (discussed in Chapters 15 and 17).

One of the best-studied modes of integrin signaling depends on a cltoplas-
mic protein tyrosine kinase called focal adhesion kinase (FAK). In studies of
cells cultured in the normal way on rigid substrata, focal adhesions are often
prominent sites of tyrosine phosphorylation (Figure f g-5ZA), and FAK is one of
the major tyrosine-phosphorylated proteins found at these sites. \A/hen inte-
grins cluster at cell-matrix contacts, FAK is recruited by intracellular anchor
proteins such as talin (binding to the integrin B subunit) or paxillin (which
binds to one type of integrin a subunit). The clustered FAK molecules cross-
phosphorylate each other on a specific tyrosine, creating a phosphotyrosine
docking site for members of the Src family of cytoplasmic tyrosine kinases. In
addition to phosphorylating other proteins at the adhesion sites, these kinases
then phosphorylate FAK on additional tyrosines, creating docking sites for a
variety of additional intracellular signaling proteins. In this way, outside-in sig-
naling from integrins, via FAK and Src-family kinases, is relayed into the cell (as
discussed in Chapter l5).

One way to analyze the function of FAK is to examine focal adhesions in cells
from mutant mice that lack the protein. FAK-deficient fibroblasts still adhere to

10  pm

Figure 1 9-52 Focal adhesions and the
role of focal adhesion kinase (FAK).
(A) A fibroblast cultured on a fibronectin-
coated substratum and stained with
f luorescent antibodies: act in f i laments are
stained green and activated proteins that
contain phosphotyrosine are red, giving
orange where the two components
overlap. The actin filaments terminate at
focal adhesions, where the cell attaches
to the substratum by means of integrins.
Proteins containing phosphotyrosine are
also concentrated at these sites,
reflecting the local activation of FAK and
other protein kinases. Signals generated
at such adhesion sites help regulate cel l
division, growth, and survival.  (8, C) The
influence of FAK on formation of focal
adhesions is shown by a comparison of
normal and FAK-deficient fibroblasts,
stained with an antibody against vincul in
to reveal the focal adhesions. (B) The
normal fibroblasts have fewer focal
adhesions and have spread after 2 hours
in culture. (C) At the same t ime point, the
FAK-deficient fibroblasts have more focal
adhesions and have not spread.
(A, courtesy of Keith Burridge; B, C, from
D. llic et al., Nature 377:539-544,'1995.
With permission from Macmil lan
Publishers Ltd.)
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fibronectin and form focal adhesions. In fact, they form too many focal adhe-
sions; as a result, cell spreading and migration are slowed (Figure 19-528 and C).
This unexpected finding suggests that FAK normally helps disassemble focal
adhesions and that this Ioss of adhesions is required for normal cell migration.
Many cancer cells have elevated levels of FAK, which may help explain why they
are often more motile than their normal counterparts.

Integrins Can Produce Localized Intracellular Effects

Through FAK and other pathways, activated integrins, like other signaling recep-
tors, can induce global cell responses, often including changes in gene expres-
sion. But the integrins are especially adept at stimulating localized changes in
the cytoplasm close to the cell-matrix contact. We have already mentioned an
important example in our discussion of epithelial cell polarity: it is through inte-
grins that the basal lamina plays its part in directing the internal apico-basal
organization of epithelial cells.

Localized intracellular effects may be a common feature of signaling by
transmembrane cell adhesion proteins in general. In the developing nervous
system, for example, the growing tip of an axon is guided mainly by its responses
to local adhesive (and repellent) cues in the environment that are recognized by
transmembrane cell adhesion proteins, as discussed in Chapter 22.The primary
effects of the adhesion proteins are thought to result from the activation of intra-
cellular signaling pathways that act locally in the axon tip, rather than through
cell-cell adhesion itself or signals conveyed to the cell body. Through localized
activation of the Rho family of small GTPases, for example (as discussed in
Chapters l5 and 16), the transmembrane adhesion proteins can control motility
and guide forward movement. In this and other ways, practically all the classes
of cell-cell and cell-matrix adhesion molecules that we have mentioned, includ-
ing integrins, are deployed to help guide axon outgrowth in the developing ner-
vous system.

Table l9-5 summarizes the categories of cell adhesion molecules that we
have considered in this chapter. In the next section, we turn from the adhesion
molecules in cell membranes to look in detail at the extracellular matrix that sur-
rounds cells in connective tissues.

Table 19-5 Cel l  Adhesion Molecule Fami l ies

HOMOPHILIC OR
HETEROPHILIC

h o m o p h i l i c

homoph i l i c

both

heteroph i l i c

he teroph i l i c

he teroph i l i c

he teroph i l i c

he teroph i l i c

1177

lg family members

Selectins (blood cel ls
and endothe l ia l  ce l l s
onty)

In tegr ins  on  b lood ce l l s

Cell-Matrix Adhesion

In tegr ins

Transmembrane
proteoglycans

E, N, BVE yes

desmoglein, yes
desmocoll in

N-CAM,ICAM no

L-, E-, and yes
P-selectins

gLB2 (LFA1) yes

many rypes yes

a6B4 yes

syndecans no

actin f i laments (via
catenins)

intermediate f i laments
(via desmoplakin,
p lakog lob in ,  and
p lakoph i l in )

unKnown

actin f i laments

actin f i laments

actin f i laments (via
ta l in ,  pax i l l i n ,  f i l amin ,
u-ac t in in ,  and v incu l in )

intermediate f i laments
(via plect in and dystonin)

actin f i laments

adherens junctions,
synapses

oesmoS0mes

neurona l  and
immunological synapses

(no prominent junctional
structure)

immunological synapses

focal adhesions

hemidesmosomes

(no prominent junctional
structure)
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Summary

Integrins are the principal receptors used by animal cells to bind to the extracellular
matrix: they function as transmembrane linkers between the extracellular matrix and
the cytoskeleton connecting usually to actin, but to intermediate ftlaments for the spe-
cialized integrins at hemidesmosomes. Integrin molecules are heterodimers, and the
binding of ligands is associated with dramatic changes of conformation. This creates
an allosteric coupling between binding to matrix outside the cell and binding to the
cytoskeleton inside it, allowing the integrin to conuey signals in both directions across
the plasma membrane-from inside to out and from outside to in. Binding of the
intracellular anchor protein talin to the tail of an integrin molecule tends to driue the
integrin into an extended conformation with increased ffinity for its extracellular lig-
and. Conuersely, binding to an extracellular ligand, by promoting the same conforma-
tional change, leads to binding of talin and formation of a linkage to the actin
cytoskeleton. Complex assemblies of proteins become organized around the intracel-
lular tails of integrins, producing intracellular signals that can influence almost any
aspect of cell behauior from proliferation and suruiual, as in the phenomenon of
anchorage dependence, to cell polarity and guidance of migration.

THE EXTRACELLULAR MATRIX OF ANIMAL
CONNECTIVE TISSUES
We have already discussed the basal lamina as an archetypal example of extra-
cellular matrix, common to practically all multicellular animals and an essential
feature of epithelial tissues. We now turn to the much more varied and bulky
forms of extracellular matrix found in connective tissues (Figure 19-53). Here,
the extracellular matrix is generally more plentiful than the cells it surrounds,
and it determines the tissue's physical properties.

The classes of macromolecules constituting the extracellular matrix in ani-
mal tissues are broadly similar, whether we consider the basal lamina or the
other forms that matrix can take, but variations in the relative amounts of these
different classes of molecules and in the ways in which they are organized give
rise to an amazing diversity of materials. The matrix can become calcified to
form the rock-hard structures of bone or teeth, or it can form the transparent
substance ofthe cornea, or it can adopt the ropelike organization that gives ten-
dons their enormous tensile strength. It forms the jelly in a jellyfish. covering the
body of a beetle or a lobster, it forms a rigid carapace. Moreover, the extracellu-
lar matrix is more than a passive scaffold to provide physical support. It has an
active and complex role in regulating the behavior of the cells that touch it,
inhabit it, or crawl through its meshes, influencing their survival, development,
migration, proliferation, shape, and function.

In this section, we focus our discussion on the extracellular matrix of con-
nective tissues in vertebrates, but bulky forms of extracellular matrix play an
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Figure 1 9-53 The connective tissue
underlying an epithel ium. This t issue
contains a variety of cel ls and extracel lular
matrix components. The predominant cel l
type is the fibroblast, which secretes
abundant extracel lular matrix.

f * I I C o r * *




