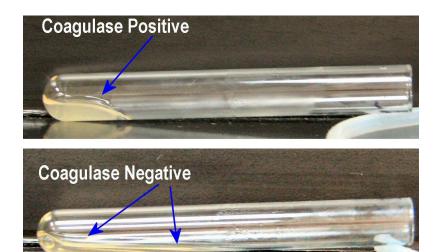
Biochemical identification of bacteria

Dr. Paul Ingram Infectious Diseases Physician (RPH) & Microbiologist (PathWest Laboratories)

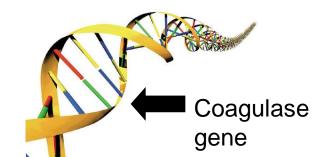
Outline

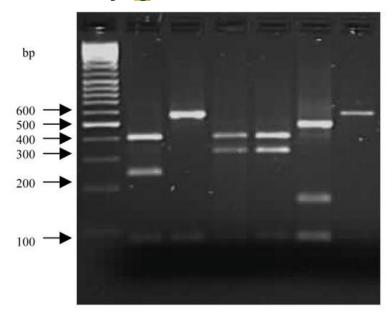
- " Phenotypic vs genotypic tests
- " Pros and cons of biochemical tests
- " Basis of biochemical tests
- " Examples of biochemical test
- The future of biochemical identification tests


Methods of bacterial ID

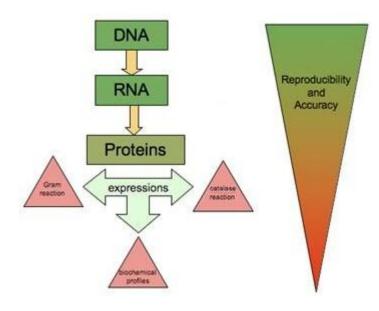
" Phenotypic

- . Detects the physical properties of bacteria
- . Influenced by gene expression
- . Includes biochemical tests
- Genotypic
 - . Detects the genetic code of bacteria (DNA)
 - . Not influenced by gene expression

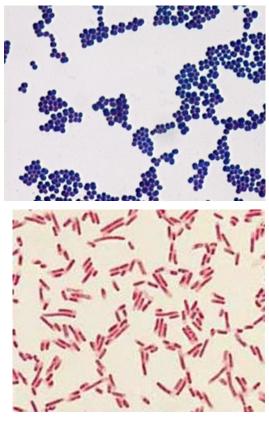

Eg coagulase for staphylococcal ID

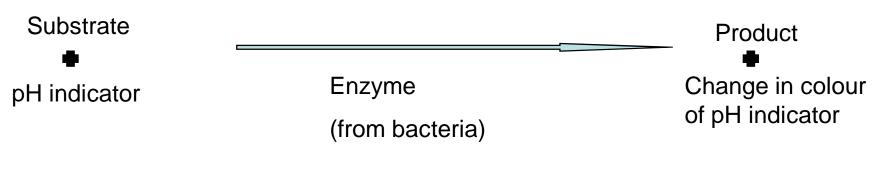

" Phenotypic test

SM MicrobeLibrary.org © Chamberlain


Genotypic test

Biochemical ID: Pros and cons


- ″ Pros
 - . Cheap
 - . Experience with use++
 - . Does not require expertise
 - . Potentially fast TAT (range: seconds to overnight)
- ″ Cons
 - . Biosafety risk (live organisms)
 - . Less accurate, less discriminatory
 - . Phenotype may be unstable
 - " Eg induceable (ie influenced by gene expression)
 - . Not possible if organism is slow growing or fastidious
 - . Subjective interpretation (less reproducable)


Type of phenotypic ID

- ["] Appearance
 - . Macroscopic
 - Microscopic (eg gram stain, rod vs coccus)
- " Growth requirement/rate
 - . Media
 - . Atmospheric gases
 - . Temperature
- ‴ Smell
- Motility
- "Hemolysis on blood agar
- Biochemical tests

(See lecture on % Gulture characteristics for bacterial identification+)

Basis of biochemical tests

Í Important features

- . Standardisation of method
- . standardised amount of bacteria used for test (=inoculum)
- . +ve and . ve controls

pH indictors

Colour changes occur at different pHs for different indicators

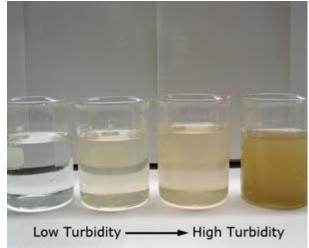
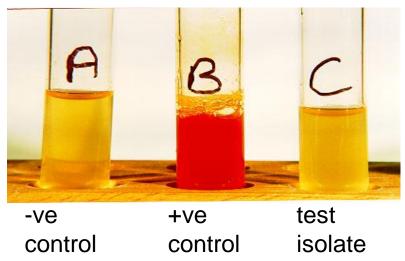


FIGURE 42.4 Urease test. Tube on the left is positive (Proteus); tube on the right is negative. © The McGraw-Hill Companies/Auburn University Photographic Service

pH Indicator pH range Change from acid to alkaline Methyl red Andrades S-8 pink to yellow pink to yellow pink to purple phenol red S-8 yellow to red

Standardisation of the inoculum


- Examples of solid phase:Loop size (eg 1microL, 10microL)
- - . Turbidity of fluid
 - The ability of particles in suspension to refract and deflect light rays
 - . Optical density
 - . Nephelometry

Positive and Negative controls

- "Positive control: bacteria with known +ve test result
- Wegative control: bacteria with known -ve test result
- If either or both of the controls fail, then the test is not valid

Types of biochemical ID methods

- Manual vs automated
 - . Automated systems have the advantage of automated reading which improves speed, consistency and removes subjective error.
- In house vs commercial

Examples of common biochemical tests used for ID of gram negative bacteria

- Ű Urease
- " Indole
- " Oxidase
- " Glucose fermentation
- *Lactose fermentation*
- *[‴]* Nitrate

Urease

- Detects hydrolysis of urea to ammonia by urease enzyme
- [%] Ammonia causes an increase in pH which is detected by the pH indicator (orange \rightarrow pink)
- " Urease +ve bacteria:
 - . Proteus
 - . Klebsiella

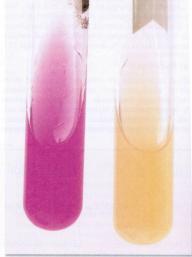
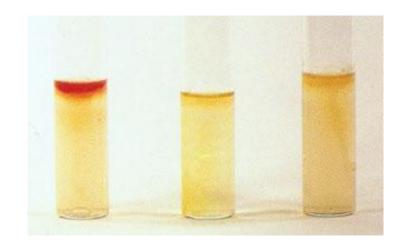
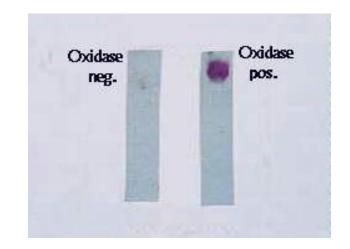
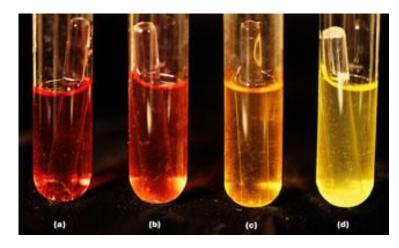



FIGURE 42.4 Urease test. Tube on the left is positive (Proteus); tube on the right is negative. © The McGraw-Hill Companies/Auburn University Photographic Service


Indole

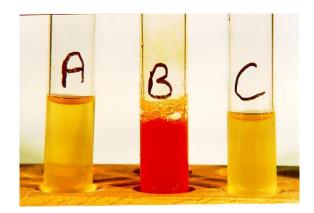
- Detects indole production from tryptophan, which produces a colour change in combination with dimethylaminobenzaldehyde (clear to red)
- Indole +ve bacteria:
 - . E.coli
 - . Citrobacter


Oxidase

- Detects cytochrome oxidase enzyme that converts dimethylphenyldiamine to indophenol blue (clear to blue)
- " Oxidase +ve bacteria:
 - . Pseudomonas
 - . Vibrio

Glucose fermentation

- Detects ability of bacteria to ferment glucose to pyruvic acid using the Embden Meyerhof pathway
- Detected by phenol red pH indicator (red/alkaline to yellow/acid)
- Bacteria that ferment glucose:
 - . E.coli
 - . Proteus


Lactose fermentation

- Detects ability of bacteria to ferment lactose to glucose then to pyruvic acid using the Embden Meyerhof pathway
- " Detected by phenol red pH indicator (red/alkaline to yellow/acid)
- Bacteria that ferment glucose:
 - . E.coli
 - . Klebsiella

Nitrate

- Detects nitrate reductase enzyme which converts nitrate to nitrite.
- Witrite then revealed by addition of naphthylamine and sulfinic acid to form diazonium dye (clear to red)
- " Nitrate +ve bacteria:
 - . E.coli
 - . Klebsiella

TSI slope

- Incorporates multiple substrates and pH indicators into 1 tube
- ["] By streaking bacteria onto surface and stabbing it into media, both aerobic and anaerobic conditions are generated

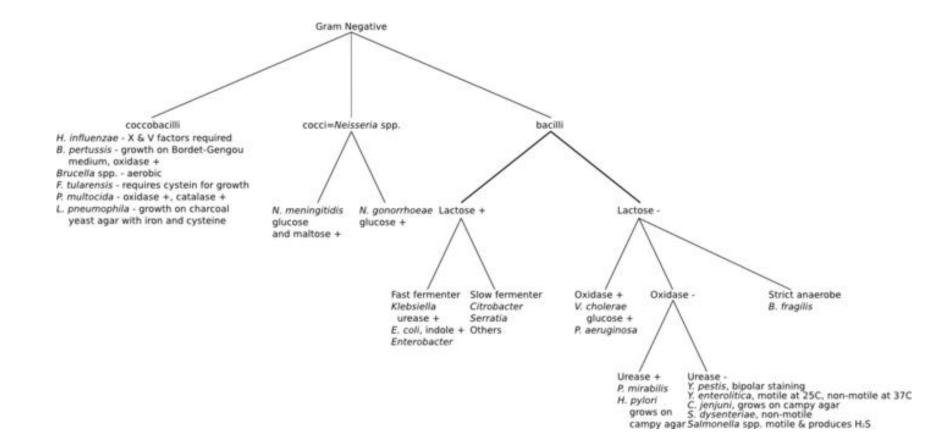
API

- "Minituarized biochemical reactions in >20 wells
- " Takes 2-24 hrs
- "Reaction profile (%biocode+) compared to an on-line database of >20000 isolates
- Commerical test

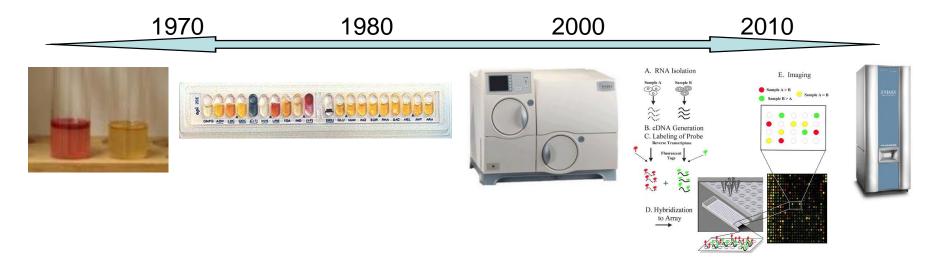
	Tests	Active ingredients	Reactions/enzymes b-galactosidase		
1	ONPG	2-nitrophenyl-bD-galactopyranoside			
2	ADH	L-arginine	Arginine DiHydrolase		
3	LDC	L-lysine	Lysine Decarboxylase		
4	ODC	L-omithine	Omithine Decarboxylase		
5	CIT	Trisodium citrate	Citrate utilization		
6	H2S	Sodium thiosulphate	H2S production		
7	URE	Urea	Urease		
8	TDA	L-tryptophane	Tryptophane deaminase		
9	IND	L-tryptophane	Indole production		
10	VP	Sodium pyruvate	Acetoin production(Voges Proskauer)		
11	GEL	Gelatine	Gelatinase		
12	GLU	D-glucose	Fermentation/oxidation (Glucose)		
13	MAN	D-mannitol	Fermentation/oxidation (Mannitol)		
14	INO	Inositol	Fermentation/oxidation (Inositol)		
15	SOR	D-sorbitol	Fermentation/oxidation (sorbitol)		
16	RHA	L-rhamnose	Fermentation/oxidation (rhamnose)		
17	SAC	D-sucrose	Fermentation/oxidation (saccharose)		
18	MEL	D-melibiose	Fermentation/oxidation (melibiose)		
19	AMY	Amygladin	Fermentation/oxidation (Amygladin)		
20	ARA	L-arabinose	Fermentation/oxidation (arabinose)		

Automated Biochemical ID systems

- *Examples*:
 - . Vitek
 - . Biolog
 - . Pheonix
 - . Autoscan Walkaway
- *Varying capacity for:*
 - . Number of specimens they can handle
 - . Size/extent of comparative database
 - . Interfacing with lab data program
 - . Turn around time
 - . Capacity for ID to species level


Diagnostic algorithms for bacterial ID

- Primary tests allow genus level ID
 (enterobacteriacae, ‰on-glucose fermenters+, HACEK, etc)
 - . Gram stain
 - . Culture morphology
 - . Basic biochemical tests
 - ["] Eg Oxidase, indole, urease tests, etc
- "Species level identification requires more complex, second line tests


Example 1 of diagnostic algorithm

	Indole	Methyl red	Voges Proskauer	Citrate	Urease
E.coli	+	+	_	-	-
Enterobacter	-	-	+	+	-
Klebsiella pneumoniae	-	_	+	+	+
Salmonella	-	+	-	+	-
Shigella	-	+	-	-	-
Proteus mirabilis	_	+	-	+/-	+

Example 2 of diagnostic algorithm

Changes in biochemical tests for ID: past and future

- Increased automated and minituarisation
- Increasingly replaced by genotypic tests
- Is identification necessary: could we manage with susceptibility testing alone?

Conclusions

- "Biochemical tests remain critical to bacterial identification
- Weed to understand the principles of the common/primary tests
- "Biochemical tests have limitations
- In the future they will increasingly be replaced by genotypic tests